Exercise 36

Find the critical numbers of the function.

$$
h(p)=\frac{p-1}{p^{2}+4}
$$

Solution

A critical number is a value of p for which the derivative is zero or nonexistent. Take the derivative of the function.

$$
\begin{aligned}
h^{\prime}(p) & =\frac{d}{d p}\left(\frac{p-1}{p^{2}+4}\right) \\
& =\frac{\left[\frac{d}{d p}(p-1)\right]\left(p^{2}+4\right)-\left[\frac{d}{d p}\left(p^{2}+4\right)\right](p-1)}{\left(p^{2}+4\right)^{2}} \\
& =\frac{(1)\left(p^{2}+4\right)-(2 p)(p-1)}{\left(p^{2}+4\right)^{2}} \\
& =\frac{\left(p^{2}+4\right)-\left(2 p^{2}-2 p\right)}{\left(p^{2}+4\right)^{2}} \\
& =\frac{-p^{2}+2 p+4}{\left(p^{2}+4\right)^{2}}
\end{aligned}
$$

Set what's in the numerator and denominator equal to zero and solve for p.

$$
\begin{array}{rr}
-p^{2}+2 p+4=0 & \left(p^{2}+4\right)^{2}=0 \\
p=\frac{-2 \pm \sqrt{2^{2}-4(-1)(4)}}{2(-1)} & p^{2}+4=0 \\
p=\frac{-2 \pm \sqrt{20}}{-2} & p=\sqrt{-4} \text { or } \quad p=-\sqrt{-4} \\
p=\frac{-2 \pm 2 \sqrt{5}}{-2} & p=2 i \quad \text { or } \quad p=-2 i
\end{array}
$$

Since only real numbers can be critical numbers of the function,

$$
p=1-\sqrt{5} \quad \text { or } \quad p=1+\sqrt{5} .
$$

